| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > nfeu1 | GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeu1 | ⊢ Ⅎx∃!xφ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2208 | . 2 ⊢ (∃!xφ ↔ ∃y∀x(φ ↔ x = y)) | |
| 2 | nfa1 1788 | . . 3 ⊢ Ⅎx∀x(φ ↔ x = y) | |
| 3 | 2 | nfex 1843 | . 2 ⊢ Ⅎx∃y∀x(φ ↔ x = y) |
| 4 | 1, 3 | nfxfr 1570 | 1 ⊢ Ⅎx∃!xφ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 = wceq 1642 ∃!weu 2204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-eu 2208 |
| This theorem is referenced by: nfmo1 2215 moaneu 2263 eupicka 2268 2eu8 2291 exists2 2294 nfreu1 2782 iota2 4368 sniota 4370 fv3 5342 tz6.12c 5348 |
| Copyright terms: Public domain | W3C validator |