NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfeu1 GIF version

Theorem nfeu1 2214
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1 x∃!xφ

Proof of Theorem nfeu1
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 df-eu 2208 . 2 (∃!xφyx(φx = y))
2 nfa1 1788 . . 3 xx(φx = y)
32nfex 1843 . 2 xyx(φx = y)
41, 3nfxfr 1570 1 x∃!xφ
Colors of variables: wff setvar class
Syntax hints:  wb 176  wal 1540  wex 1541  wnf 1544   = wceq 1642  ∃!weu 2204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-eu 2208
This theorem is referenced by:  nfmo1  2215  moaneu  2263  eupicka  2268  2eu8  2291  exists2  2294  nfreu1  2782  iota2  4368  sniota  4370  fv3  5342  tz6.12c  5348
  Copyright terms: Public domain W3C validator