NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfsb2 GIF version

Theorem nfsb2 2058
Description: Bound-variable hypothesis builder for substitution. (Contributed by Mario Carneiro, 4-Oct-2016.)
Assertion
Ref Expression
nfsb2 x x = y → Ⅎx[y / x]φ)

Proof of Theorem nfsb2
StepHypRef Expression
1 nfnae 1956 . 2 x ¬ x x = y
2 hbsb2 2057 . 2 x x = y → ([y / x]φx[y / x]φ))
31, 2nfd 1766 1 x x = y → Ⅎx[y / x]φ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540  wnf 1544  [wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649
This theorem is referenced by:  sbequi  2059  nfsb4t  2080  sbco3  2088
  Copyright terms: Public domain W3C validator