NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nss GIF version

Theorem nss 3329
Description: Negation of subclass relationship. Exercise 13 of [TakeutiZaring] p. 18. (Contributed by NM, 25-Feb-1996.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
Assertion
Ref Expression
nss A Bx(x A ¬ x B))
Distinct variable groups:   x,A   x,B

Proof of Theorem nss
StepHypRef Expression
1 exanali 1585 . . 3 (x(x A ¬ x B) ↔ ¬ x(x Ax B))
2 dfss2 3262 . . 3 (A Bx(x Ax B))
31, 2xchbinxr 302 . 2 (x(x A ¬ x B) ↔ ¬ A B)
43bicomi 193 1 A Bx(x A ¬ x B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wal 1540  wex 1541   wcel 1710   wss 3257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator