NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nfunsn GIF version

Theorem nfunsn 5354
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn (¬ Fun (F {A}) → (FA) = )

Proof of Theorem nfunsn
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2244 . . . . . 6 (∃!y AFy∃*y AFy)
2 brres 4950 . . . . . . . 8 (x(F {A})y ↔ (xFy x {A}))
3 elsn 3749 . . . . . . . . . 10 (x {A} ↔ x = A)
4 breq1 4643 . . . . . . . . . 10 (x = A → (xFyAFy))
53, 4sylbi 187 . . . . . . . . 9 (x {A} → (xFyAFy))
65biimpac 472 . . . . . . . 8 ((xFy x {A}) → AFy)
72, 6sylbi 187 . . . . . . 7 (x(F {A})yAFy)
87moimi 2251 . . . . . 6 (∃*y AFy∃*y x(F {A})y)
91, 8syl 15 . . . . 5 (∃!y AFy∃*y x(F {A})y)
10 tz6.12-2 5347 . . . . 5 ∃!y AFy → (FA) = )
119, 10nsyl4 134 . . . 4 (¬ (FA) = ∃*y x(F {A})y)
1211alrimiv 1631 . . 3 (¬ (FA) = x∃*y x(F {A})y)
13 dffun6 5125 . . 3 (Fun (F {A}) ↔ x∃*y x(F {A})y)
1412, 13sylibr 203 . 2 (¬ (FA) = → Fun (F {A}))
1514con1i 121 1 (¬ Fun (F {A}) → (FA) = )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wal 1540   = wceq 1642   wcel 1710  ∃!weu 2204  ∃*wmo 2205  c0 3551  {csn 3738   class class class wbr 4640   cres 4775  Fun wfun 4776  cfv 4782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-id 4768  df-xp 4785  df-cnv 4786  df-res 4789  df-fun 4790  df-fv 4796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator