New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > oprabbidv | GIF version |
Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.) |
Ref | Expression |
---|---|
oprabbidv.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
oprabbidv | ⊢ (φ → {〈〈x, y〉, z〉 ∣ ψ} = {〈〈x, y〉, z〉 ∣ χ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | nfv 1619 | . 2 ⊢ Ⅎyφ | |
3 | nfv 1619 | . 2 ⊢ Ⅎzφ | |
4 | oprabbidv.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
5 | 1, 2, 3, 4 | oprabbid 5563 | 1 ⊢ (φ → {〈〈x, y〉, z〉 ∣ ψ} = {〈〈x, y〉, z〉 ∣ χ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 = wceq 1642 {coprab 5527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-oprab 5528 |
This theorem is referenced by: oprabbii 5565 resoprab2 5582 mpt2eq123dv 5663 mpt2eq3dva 5669 |
Copyright terms: Public domain | W3C validator |