New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > resoprab2 | GIF version |
Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
resoprab2 | ⊢ ((C ⊆ A ∧ D ⊆ B) → ({〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ φ)} ↾ (C × D)) = {〈〈x, y〉, z〉 ∣ ((x ∈ C ∧ y ∈ D) ∧ φ)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resoprab 5582 | . 2 ⊢ ({〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ φ)} ↾ (C × D)) = {〈〈x, y〉, z〉 ∣ ((x ∈ C ∧ y ∈ D) ∧ ((x ∈ A ∧ y ∈ B) ∧ φ))} | |
2 | anass 630 | . . . 4 ⊢ ((((x ∈ C ∧ y ∈ D) ∧ (x ∈ A ∧ y ∈ B)) ∧ φ) ↔ ((x ∈ C ∧ y ∈ D) ∧ ((x ∈ A ∧ y ∈ B) ∧ φ))) | |
3 | an4 797 | . . . . . 6 ⊢ (((x ∈ C ∧ y ∈ D) ∧ (x ∈ A ∧ y ∈ B)) ↔ ((x ∈ C ∧ x ∈ A) ∧ (y ∈ D ∧ y ∈ B))) | |
4 | ssel 3268 | . . . . . . . . 9 ⊢ (C ⊆ A → (x ∈ C → x ∈ A)) | |
5 | pm4.71 611 | . . . . . . . . 9 ⊢ ((x ∈ C → x ∈ A) ↔ (x ∈ C ↔ (x ∈ C ∧ x ∈ A))) | |
6 | 4, 5 | sylib 188 | . . . . . . . 8 ⊢ (C ⊆ A → (x ∈ C ↔ (x ∈ C ∧ x ∈ A))) |
7 | 6 | bicomd 192 | . . . . . . 7 ⊢ (C ⊆ A → ((x ∈ C ∧ x ∈ A) ↔ x ∈ C)) |
8 | ssel 3268 | . . . . . . . . 9 ⊢ (D ⊆ B → (y ∈ D → y ∈ B)) | |
9 | pm4.71 611 | . . . . . . . . 9 ⊢ ((y ∈ D → y ∈ B) ↔ (y ∈ D ↔ (y ∈ D ∧ y ∈ B))) | |
10 | 8, 9 | sylib 188 | . . . . . . . 8 ⊢ (D ⊆ B → (y ∈ D ↔ (y ∈ D ∧ y ∈ B))) |
11 | 10 | bicomd 192 | . . . . . . 7 ⊢ (D ⊆ B → ((y ∈ D ∧ y ∈ B) ↔ y ∈ D)) |
12 | 7, 11 | bi2anan9 843 | . . . . . 6 ⊢ ((C ⊆ A ∧ D ⊆ B) → (((x ∈ C ∧ x ∈ A) ∧ (y ∈ D ∧ y ∈ B)) ↔ (x ∈ C ∧ y ∈ D))) |
13 | 3, 12 | syl5bb 248 | . . . . 5 ⊢ ((C ⊆ A ∧ D ⊆ B) → (((x ∈ C ∧ y ∈ D) ∧ (x ∈ A ∧ y ∈ B)) ↔ (x ∈ C ∧ y ∈ D))) |
14 | 13 | anbi1d 685 | . . . 4 ⊢ ((C ⊆ A ∧ D ⊆ B) → ((((x ∈ C ∧ y ∈ D) ∧ (x ∈ A ∧ y ∈ B)) ∧ φ) ↔ ((x ∈ C ∧ y ∈ D) ∧ φ))) |
15 | 2, 14 | syl5bbr 250 | . . 3 ⊢ ((C ⊆ A ∧ D ⊆ B) → (((x ∈ C ∧ y ∈ D) ∧ ((x ∈ A ∧ y ∈ B) ∧ φ)) ↔ ((x ∈ C ∧ y ∈ D) ∧ φ))) |
16 | 15 | oprabbidv 5565 | . 2 ⊢ ((C ⊆ A ∧ D ⊆ B) → {〈〈x, y〉, z〉 ∣ ((x ∈ C ∧ y ∈ D) ∧ ((x ∈ A ∧ y ∈ B) ∧ φ))} = {〈〈x, y〉, z〉 ∣ ((x ∈ C ∧ y ∈ D) ∧ φ)}) |
17 | 1, 16 | syl5eq 2397 | 1 ⊢ ((C ⊆ A ∧ D ⊆ B) → ({〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ φ)} ↾ (C × D)) = {〈〈x, y〉, z〉 ∣ ((x ∈ C ∧ y ∈ D) ∧ φ)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ⊆ wss 3258 × cxp 4771 ↾ cres 4775 {coprab 5528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-xp 4785 df-res 4789 df-oprab 5529 |
This theorem is referenced by: resmpt2 5698 |
Copyright terms: Public domain | W3C validator |