| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2sb5 | GIF version | ||
| Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
| Ref | Expression |
|---|---|
| 2sb5 | ⊢ ([z / x][w / y]φ ↔ ∃x∃y((x = z ∧ y = w) ∧ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb5 2100 | . 2 ⊢ ([z / x][w / y]φ ↔ ∃x(x = z ∧ [w / y]φ)) | |
| 2 | 19.42v 1905 | . . . 4 ⊢ (∃y(x = z ∧ (y = w ∧ φ)) ↔ (x = z ∧ ∃y(y = w ∧ φ))) | |
| 3 | anass 630 | . . . . 5 ⊢ (((x = z ∧ y = w) ∧ φ) ↔ (x = z ∧ (y = w ∧ φ))) | |
| 4 | 3 | exbii 1582 | . . . 4 ⊢ (∃y((x = z ∧ y = w) ∧ φ) ↔ ∃y(x = z ∧ (y = w ∧ φ))) |
| 5 | sb5 2100 | . . . . 5 ⊢ ([w / y]φ ↔ ∃y(y = w ∧ φ)) | |
| 6 | 5 | anbi2i 675 | . . . 4 ⊢ ((x = z ∧ [w / y]φ) ↔ (x = z ∧ ∃y(y = w ∧ φ))) |
| 7 | 2, 4, 6 | 3bitr4ri 269 | . . 3 ⊢ ((x = z ∧ [w / y]φ) ↔ ∃y((x = z ∧ y = w) ∧ φ)) |
| 8 | 7 | exbii 1582 | . 2 ⊢ (∃x(x = z ∧ [w / y]φ) ↔ ∃x∃y((x = z ∧ y = w) ∧ φ)) |
| 9 | 1, 8 | bitri 240 | 1 ⊢ ([z / x][w / y]φ ↔ ∃x∃y((x = z ∧ y = w) ∧ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 [wsb 1648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
| This theorem is referenced by: pm11.07 2115 |
| Copyright terms: Public domain | W3C validator |