New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb6a | GIF version |
Description: Equivalence for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb6a | ⊢ ([y / x]φ ↔ ∀x(x = y → [x / y]φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2099 | . 2 ⊢ ([y / x]φ ↔ ∀x(x = y → φ)) | |
2 | sbequ12 1919 | . . . . 5 ⊢ (y = x → (φ ↔ [x / y]φ)) | |
3 | 2 | equcoms 1681 | . . . 4 ⊢ (x = y → (φ ↔ [x / y]φ)) |
4 | 3 | pm5.74i 236 | . . 3 ⊢ ((x = y → φ) ↔ (x = y → [x / y]φ)) |
5 | 4 | albii 1566 | . 2 ⊢ (∀x(x = y → φ) ↔ ∀x(x = y → [x / y]φ)) |
6 | 1, 5 | bitri 240 | 1 ⊢ ([y / x]φ ↔ ∀x(x = y → [x / y]φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |