New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rzal | GIF version |
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
rzal | ⊢ (A = ∅ → ∀x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 3557 | . . . 4 ⊢ (x ∈ A → A ≠ ∅) | |
2 | 1 | necon2bi 2563 | . . 3 ⊢ (A = ∅ → ¬ x ∈ A) |
3 | 2 | pm2.21d 98 | . 2 ⊢ (A = ∅ → (x ∈ A → φ)) |
4 | 3 | ralrimiv 2697 | 1 ⊢ (A = ∅ → ∀x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∅c0 3551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 |
This theorem is referenced by: ralidm 3654 rgenz 3656 ralf0 3657 raaan 3658 raaanv 3659 iinrab2 4030 riinrab 4042 |
Copyright terms: Public domain | W3C validator |