NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rzal GIF version

Theorem rzal 3652
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
rzal (A = x A φ)
Distinct variable group:   x,A
Allowed substitution hint:   φ(x)

Proof of Theorem rzal
StepHypRef Expression
1 ne0i 3557 . . . 4 (x AA)
21necon2bi 2563 . . 3 (A = → ¬ x A)
32pm2.21d 98 . 2 (A = → (x Aφ))
43ralrimiv 2697 1 (A = x A φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  wral 2615  c0 3551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552
This theorem is referenced by:  ralidm  3654  rgenz  3656  ralf0  3657  raaan  3658  raaanv  3659  iinrab2  4030  riinrab  4042
  Copyright terms: Public domain W3C validator