NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  clos1nrel GIF version

Theorem clos1nrel 5887
Description: The value of a closure when the base set is not related to anything in R. (Contributed by SF, 13-Mar-2015.)
Hypotheses
Ref Expression
clos1nrel.1 S V
clos1nrel.2 R V
clos1nrel.3 C = Clos1 (S, R)
Assertion
Ref Expression
clos1nrel ((RS) = C = S)

Proof of Theorem clos1nrel
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eq0 3565 . . . . 5 ((RS) = y ¬ y (RS))
2 rspe 2676 . . . . . . . . 9 ((x S xRy) → x S xRy)
3 elima 4755 . . . . . . . . 9 (y (RS) ↔ x S xRy)
42, 3sylibr 203 . . . . . . . 8 ((x S xRy) → y (RS))
54con3i 127 . . . . . . 7 y (RS) → ¬ (x S xRy))
65pm2.21d 98 . . . . . 6 y (RS) → ((x S xRy) → y S))
76alimi 1559 . . . . 5 (y ¬ y (RS) → y((x S xRy) → y S))
81, 7sylbi 187 . . . 4 ((RS) = y((x S xRy) → y S))
98ralrimivw 2699 . . 3 ((RS) = x C y((x S xRy) → y S))
10 clos1nrel.1 . . . 4 S V
11 ssid 3291 . . . 4 S S
12 clos1nrel.2 . . . . 5 R V
13 clos1nrel.3 . . . . 5 C = Clos1 (S, R)
1410, 12, 13clos1induct 5881 . . . 4 ((S V S S x C y((x S xRy) → y S)) → C S)
1510, 11, 14mp3an12 1267 . . 3 (x C y((x S xRy) → y S) → C S)
169, 15syl 15 . 2 ((RS) = C S)
1713clos1base 5879 . . 3 S C
1817a1i 10 . 2 ((RS) = S C)
1916, 18eqssd 3290 1 ((RS) = C = S)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wal 1540   = wceq 1642   wcel 1710  wral 2615  wrex 2616  Vcvv 2860   wss 3258  c0 3551   class class class wbr 4640  cima 4723   Clos1 cclos1 5873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-2nd 4798  df-txp 5737  df-fix 5741  df-ins2 5751  df-ins3 5753  df-image 5755  df-clos1 5874
This theorem is referenced by:  nchoicelem3  6292
  Copyright terms: Public domain W3C validator