| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > prid1g | GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) | 
| Ref | Expression | 
|---|---|
| prid1g | ⊢ (A ∈ V → A ∈ {A, B}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2353 | . . 3 ⊢ A = A | |
| 2 | 1 | orci 379 | . 2 ⊢ (A = A ∨ A = B) | 
| 3 | elprg 3751 | . 2 ⊢ (A ∈ V → (A ∈ {A, B} ↔ (A = A ∨ A = B))) | |
| 4 | 2, 3 | mpbiri 224 | 1 ⊢ (A ∈ V → A ∈ {A, B}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 357 = wceq 1642 ∈ wcel 1710 {cpr 3739 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 | 
| This theorem is referenced by: prid2g 3827 prid1 3828 opkth1g 4131 | 
| Copyright terms: Public domain | W3C validator |