NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  prid1g GIF version

Theorem prid1g 3826
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid1g (A VA {A, B})

Proof of Theorem prid1g
StepHypRef Expression
1 eqid 2353 . . 3 A = A
21orci 379 . 2 (A = A A = B)
3 elprg 3751 . 2 (A V → (A {A, B} ↔ (A = A A = B)))
42, 3mpbiri 224 1 (A VA {A, B})
Colors of variables: wff setvar class
Syntax hints:  wi 4   wo 357   = wceq 1642   wcel 1710  {cpr 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743
This theorem is referenced by:  prid2g  3827  prid1  3828  opkth1g  4131
  Copyright terms: Public domain W3C validator