New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pwssb | GIF version |
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.) |
Ref | Expression |
---|---|
pwssb | ⊢ (A ⊆ ℘B ↔ ∀x ∈ A x ⊆ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 4052 | . 2 ⊢ (A ⊆ ℘B ↔ ∪A ⊆ B) | |
2 | unissb 3922 | . 2 ⊢ (∪A ⊆ B ↔ ∀x ∈ A x ⊆ B) | |
3 | 1, 2 | bitri 240 | 1 ⊢ (A ⊆ ℘B ↔ ∀x ∈ A x ⊆ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∀wral 2615 ⊆ wss 3258 ℘cpw 3723 ∪cuni 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-pw 3725 df-uni 3893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |