NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sspwuni GIF version

Theorem sspwuni 4052
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni (A BA B)

Proof of Theorem sspwuni
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . 4 x V
21elpw 3729 . . 3 (x Bx B)
32ralbii 2639 . 2 (x A x Bx A x B)
4 dfss3 3264 . 2 (A Bx A x B)
5 unissb 3922 . 2 (A Bx A x B)
63, 4, 53bitr4i 268 1 (A BA B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wcel 1710  wral 2615   wss 3258  cpw 3723  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-pw 3725  df-uni 3893
This theorem is referenced by:  pwssb  4053  elpwuni  4054  rintn0  4057  qsss  5987
  Copyright terms: Public domain W3C validator