New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rgen3 | GIF version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.) |
Ref | Expression |
---|---|
rgen3.1 | ⊢ ((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ) |
Ref | Expression |
---|---|
rgen3 | ⊢ ∀x ∈ A ∀y ∈ B ∀z ∈ C φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen3.1 | . . . 4 ⊢ ((x ∈ A ∧ y ∈ B ∧ z ∈ C) → φ) | |
2 | 1 | 3expa 1151 | . . 3 ⊢ (((x ∈ A ∧ y ∈ B) ∧ z ∈ C) → φ) |
3 | 2 | ralrimiva 2698 | . 2 ⊢ ((x ∈ A ∧ y ∈ B) → ∀z ∈ C φ) |
4 | 3 | rgen2 2711 | 1 ⊢ ∀x ∈ A ∀y ∈ B ∀z ∈ C φ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |