NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rgen3 GIF version

Theorem rgen3 2712
Description: Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
Hypothesis
Ref Expression
rgen3.1 ((x A y B z C) → φ)
Assertion
Ref Expression
rgen3 x A y B z C φ
Distinct variable groups:   y,z,A   z,B   x,y,z
Allowed substitution hints:   φ(x,y,z)   A(x)   B(x,y)   C(x,y,z)

Proof of Theorem rgen3
StepHypRef Expression
1 rgen3.1 . . . 4 ((x A y B z C) → φ)
213expa 1151 . . 3 (((x A y B) z C) → φ)
32ralrimiva 2698 . 2 ((x A y B) → z C φ)
43rgen2 2711 1 x A y B z C φ
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator