NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ralrimivw GIF version

Theorem ralrimivw 2699
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
ralrimivw.1 (φψ)
Assertion
Ref Expression
ralrimivw (φx A ψ)
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   A(x)

Proof of Theorem ralrimivw
StepHypRef Expression
1 ralrimivw.1 . . 3 (φψ)
21a1d 22 . 2 (φ → (x Aψ))
32ralrimiv 2697 1 (φx A ψ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545  df-ral 2620
This theorem is referenced by:  2rmorex  3041  riinrab  4042  nnadjoinpw  4522  dmxp  4924  eqfnfv  5393  mpteq12dv  5657  mpt2eq12  5663  clos1nrel  5887  uniqs  5985  enprmaplem5  6081  nchoicelem6  6295  dmfrec  6317
  Copyright terms: Public domain W3C validator