New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralrimivw | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
ralrimivw.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
ralrimivw | ⊢ (φ → ∀x ∈ A ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivw.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | a1d 22 | . 2 ⊢ (φ → (x ∈ A → ψ)) |
3 | 2 | ralrimiv 2697 | 1 ⊢ (φ → ∀x ∈ A ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 df-ral 2620 |
This theorem is referenced by: 2rmorex 3041 riinrab 4042 nnadjoinpw 4522 dmxp 4924 eqfnfv 5393 mpteq12dv 5657 mpt2eq12 5663 clos1nrel 5887 uniqs 5985 enprmaplem5 6081 nchoicelem6 6295 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |