Proof of Theorem rmo3
Step | Hyp | Ref
| Expression |
1 | | df-rmo 2623 |
. 2
⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) |
2 | | sban 2069 |
. . . . . . . . . . 11
⊢ ([y / x](x ∈ A ∧ φ) ↔ ([y / x]x ∈ A ∧ [y / x]φ)) |
3 | | clelsb1 2455 |
. . . . . . . . . . . 12
⊢ ([y / x]x ∈ A ↔ y ∈ A) |
4 | 3 | anbi1i 676 |
. . . . . . . . . . 11
⊢ (([y / x]x ∈ A ∧ [y / x]φ) ↔ (y ∈ A ∧ [y / x]φ)) |
5 | 2, 4 | bitri 240 |
. . . . . . . . . 10
⊢ ([y / x](x ∈ A ∧ φ) ↔ (y ∈ A ∧ [y / x]φ)) |
6 | 5 | anbi2i 675 |
. . . . . . . . 9
⊢ (((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) ↔
((x ∈
A ∧ φ) ∧
(y ∈
A ∧
[y / x]φ))) |
7 | | an4 797 |
. . . . . . . . 9
⊢ (((x ∈ A ∧ φ) ∧
(y ∈
A ∧
[y / x]φ)) ↔
((x ∈
A ∧
y ∈
A) ∧
(φ ∧
[y / x]φ))) |
8 | | ancom 437 |
. . . . . . . . . 10
⊢ ((x ∈ A ∧ y ∈ A) ↔ (y
∈ A ∧ x ∈ A)) |
9 | 8 | anbi1i 676 |
. . . . . . . . 9
⊢ (((x ∈ A ∧ y ∈ A) ∧ (φ ∧
[y / x]φ)) ↔
((y ∈
A ∧
x ∈
A) ∧
(φ ∧
[y / x]φ))) |
10 | 6, 7, 9 | 3bitri 262 |
. . . . . . . 8
⊢ (((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) ↔
((y ∈
A ∧
x ∈
A) ∧
(φ ∧
[y / x]φ))) |
11 | 10 | imbi1i 315 |
. . . . . . 7
⊢ ((((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ (((y ∈ A ∧ x ∈ A) ∧ (φ ∧ [y / x]φ)) →
x = y)) |
12 | | impexp 433 |
. . . . . . 7
⊢ ((((y ∈ A ∧ x ∈ A) ∧ (φ ∧
[y / x]φ)) →
x = y)
↔ ((y ∈ A ∧ x ∈ A) →
((φ ∧
[y / x]φ) →
x = y))) |
13 | | impexp 433 |
. . . . . . 7
⊢ (((y ∈ A ∧ x ∈ A) → ((φ ∧
[y / x]φ) →
x = y))
↔ (y ∈ A →
(x ∈
A → ((φ ∧
[y / x]φ) →
x = y)))) |
14 | 11, 12, 13 | 3bitri 262 |
. . . . . 6
⊢ ((((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ (y ∈ A →
(x ∈
A → ((φ ∧
[y / x]φ) →
x = y)))) |
15 | 14 | albii 1566 |
. . . . 5
⊢ (∀y(((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ ∀y(y ∈ A →
(x ∈
A → ((φ ∧
[y / x]φ) →
x = y)))) |
16 | | df-ral 2620 |
. . . . 5
⊢ (∀y ∈ A (x ∈ A → ((φ
∧ [y /
x]φ) → x = y)) ↔
∀y(y ∈ A →
(x ∈
A → ((φ ∧
[y / x]φ) →
x = y)))) |
17 | | r19.21v 2702 |
. . . . 5
⊢ (∀y ∈ A (x ∈ A → ((φ
∧ [y /
x]φ) → x = y)) ↔
(x ∈
A → ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y))) |
18 | 15, 16, 17 | 3bitr2i 264 |
. . . 4
⊢ (∀y(((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ (x ∈ A →
∀y
∈ A
((φ ∧
[y / x]φ) →
x = y))) |
19 | 18 | albii 1566 |
. . 3
⊢ (∀x∀y(((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)
↔ ∀x(x ∈ A →
∀y
∈ A
((φ ∧
[y / x]φ) →
x = y))) |
20 | | nfv 1619 |
. . . . 5
⊢ Ⅎy x ∈ A |
21 | | rmo2.1 |
. . . . 5
⊢ Ⅎyφ |
22 | 20, 21 | nfan 1824 |
. . . 4
⊢ Ⅎy(x ∈ A ∧ φ) |
23 | 22 | mo3 2235 |
. . 3
⊢ (∃*x(x ∈ A ∧ φ) ↔ ∀x∀y(((x ∈ A ∧ φ) ∧
[y / x](x ∈ A ∧ φ)) →
x = y)) |
24 | | df-ral 2620 |
. . 3
⊢ (∀x ∈ A ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y)
↔ ∀x(x ∈ A →
∀y
∈ A
((φ ∧
[y / x]φ) →
x = y))) |
25 | 19, 23, 24 | 3bitr4i 268 |
. 2
⊢ (∃*x(x ∈ A ∧ φ) ↔ ∀x ∈ A ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y)) |
26 | 1, 25 | bitri 240 |
1
⊢ (∃*x ∈ A φ ↔ ∀x ∈ A ∀y ∈ A ((φ ∧
[y / x]φ) →
x = y)) |