| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > r19.32v | GIF version | ||
| Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| r19.32v | ⊢ (∀x ∈ A (φ ∨ ψ) ↔ (φ ∨ ∀x ∈ A ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.21v 2702 | . 2 ⊢ (∀x ∈ A (¬ φ → ψ) ↔ (¬ φ → ∀x ∈ A ψ)) | |
| 2 | df-or 359 | . . 3 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
| 3 | 2 | ralbii 2639 | . 2 ⊢ (∀x ∈ A (φ ∨ ψ) ↔ ∀x ∈ A (¬ φ → ψ)) |
| 4 | df-or 359 | . 2 ⊢ ((φ ∨ ∀x ∈ A ψ) ↔ (¬ φ → ∀x ∈ A ψ)) | |
| 5 | 1, 3, 4 | 3bitr4i 268 | 1 ⊢ (∀x ∈ A (φ ∨ ψ) ↔ (φ ∨ ∀x ∈ A ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-ral 2620 |
| This theorem is referenced by: iinun2 4033 iinuni 4050 |
| Copyright terms: Public domain | W3C validator |