New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabab | GIF version |
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rabab | ⊢ {x ∈ V ∣ φ} = {x ∣ φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2623 | . 2 ⊢ {x ∈ V ∣ φ} = {x ∣ (x ∈ V ∧ φ)} | |
2 | vex 2862 | . . . 4 ⊢ x ∈ V | |
3 | 2 | biantrur 492 | . . 3 ⊢ (φ ↔ (x ∈ V ∧ φ)) |
4 | 3 | abbii 2465 | . 2 ⊢ {x ∣ φ} = {x ∣ (x ∈ V ∧ φ)} |
5 | 1, 4 | eqtr4i 2376 | 1 ⊢ {x ∈ V ∣ φ} = {x ∣ φ} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2618 Vcvv 2859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rab 2623 df-v 2861 |
This theorem is referenced by: notab 3525 intmin2 3953 |
Copyright terms: Public domain | W3C validator |