| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > notab | GIF version | ||
| Description: A class builder defined by a negation. (Contributed by FL, 18-Sep-2010.) |
| Ref | Expression |
|---|---|
| notab | ⊢ {x ∣ ¬ φ} = (V ∖ {x ∣ φ}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2624 | . . 3 ⊢ {x ∈ V ∣ ¬ φ} = {x ∣ (x ∈ V ∧ ¬ φ)} | |
| 2 | rabab 2877 | . . 3 ⊢ {x ∈ V ∣ ¬ φ} = {x ∣ ¬ φ} | |
| 3 | 1, 2 | eqtr3i 2375 | . 2 ⊢ {x ∣ (x ∈ V ∧ ¬ φ)} = {x ∣ ¬ φ} |
| 4 | difab 3524 | . . 3 ⊢ ({x ∣ x ∈ V} ∖ {x ∣ φ}) = {x ∣ (x ∈ V ∧ ¬ φ)} | |
| 5 | abid2 2471 | . . . 4 ⊢ {x ∣ x ∈ V} = V | |
| 6 | 5 | difeq1i 3382 | . . 3 ⊢ ({x ∣ x ∈ V} ∖ {x ∣ φ}) = (V ∖ {x ∣ φ}) |
| 7 | 4, 6 | eqtr3i 2375 | . 2 ⊢ {x ∣ (x ∈ V ∧ ¬ φ)} = (V ∖ {x ∣ φ}) |
| 8 | 3, 7 | eqtr3i 2375 | 1 ⊢ {x ∣ ¬ φ} = (V ∖ {x ∣ φ}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 {crab 2619 Vcvv 2860 ∖ cdif 3207 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 |
| This theorem is referenced by: dfif3 3673 |
| Copyright terms: Public domain | W3C validator |