NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intmin2 GIF version

Theorem intmin2 3954
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1 A V
Assertion
Ref Expression
intmin2 {x A x} = A
Distinct variable group:   x,A

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2877 . . 3 {x V A x} = {x A x}
21inteqi 3931 . 2 {x V A x} = {x A x}
3 intmin2.1 . . 3 A V
4 intmin 3947 . . 3 (A V → {x V A x} = A)
53, 4ax-mp 5 . 2 {x V A x} = A
62, 5eqtr3i 2375 1 {x A x} = A
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  {cab 2339  {crab 2619  Vcvv 2860   wss 3258  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rab 2624  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-int 3928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator