New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabeq2i | GIF version |
Description: Inference rule from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
rabeqi.1 | ⊢ A = {x ∈ B ∣ φ} |
Ref | Expression |
---|---|
rabeq2i | ⊢ (x ∈ A ↔ (x ∈ B ∧ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqi.1 | . . 3 ⊢ A = {x ∈ B ∣ φ} | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (x ∈ A ↔ x ∈ {x ∈ B ∣ φ}) |
3 | rabid 2788 | . 2 ⊢ (x ∈ {x ∈ B ∣ φ} ↔ (x ∈ B ∧ φ)) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (x ∈ A ↔ (x ∈ B ∧ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {crab 2619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-rab 2624 |
This theorem is referenced by: fvmptss 5706 |
Copyright terms: Public domain | W3C validator |