New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  rabeqbidv GIF version

Theorem rabeqbidv 2854
 Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
Hypotheses
Ref Expression
rabeqbidv.1 (φA = B)
rabeqbidv.2 (φ → (ψχ))
Assertion
Ref Expression
rabeqbidv (φ → {x A ψ} = {x B χ})
Distinct variable groups:   x,A   x,B   φ,x
Allowed substitution hints:   ψ(x)   χ(x)

Proof of Theorem rabeqbidv
StepHypRef Expression
1 rabeqbidv.1 . . 3 (φA = B)
2 rabeq 2853 . . 3 (A = B → {x A ψ} = {x B ψ})
31, 2syl 15 . 2 (φ → {x A ψ} = {x B ψ})
4 rabeqbidv.2 . . 3 (φ → (ψχ))
54rabbidv 2851 . 2 (φ → {x B ψ} = {x B χ})
63, 5eqtrd 2385 1 (φ → {x A ψ} = {x B χ})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 176   = wceq 1642  {crab 2618 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-ral 2619  df-rab 2623 This theorem is referenced by:  pmvalg  6010
 Copyright terms: Public domain W3C validator