New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  rabssab GIF version

Theorem rabssab 3352
 Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab {x A φ} {x φ}

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 2623 . 2 {x A φ} = {x (x A φ)}
2 simpr 447 . . 3 ((x A φ) → φ)
32ss2abi 3338 . 2 {x (x A φ)} {x φ}
41, 3eqsstri 3301 1 {x A φ} {x φ}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 358   ∈ wcel 1710  {cab 2339  {crab 2618   ⊆ wss 3257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rab 2623  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator