New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rabssab | GIF version |
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabssab | ⊢ {x ∈ A ∣ φ} ⊆ {x ∣ φ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2623 | . 2 ⊢ {x ∈ A ∣ φ} = {x ∣ (x ∈ A ∧ φ)} | |
2 | simpr 447 | . . 3 ⊢ ((x ∈ A ∧ φ) → φ) | |
3 | 2 | ss2abi 3338 | . 2 ⊢ {x ∣ (x ∈ A ∧ φ)} ⊆ {x ∣ φ} |
4 | 1, 3 | eqsstri 3301 | 1 ⊢ {x ∈ A ∣ φ} ⊆ {x ∣ φ} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 ∈ wcel 1710 {cab 2339 {crab 2618 ⊆ wss 3257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rab 2623 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-ss 3259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |