New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexeqi | GIF version |
Description: Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ A = B |
Ref | Expression |
---|---|
rexeqi | ⊢ (∃x ∈ A φ ↔ ∃x ∈ B φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ A = B | |
2 | rexeq 2809 | . 2 ⊢ (A = B → (∃x ∈ A φ ↔ ∃x ∈ B φ)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∃x ∈ A φ ↔ ∃x ∈ B φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
This theorem is referenced by: rexrab2 3005 rexprg 3777 rextpg 3779 opeq 4620 rexxp 4827 clos1basesucg 5885 |
Copyright terms: Public domain | W3C validator |