New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > trrd | GIF version |
Description: Deduce transitivity from its properties. (Contributed by SF, 22-Feb-2015.) |
Ref | Expression |
---|---|
trrd.1 | ⊢ (φ → R ∈ V) |
trrd.2 | ⊢ (φ → A ∈ W) |
trrd.3 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A ∧ z ∈ A) ∧ (xRy ∧ yRz)) → xRz) |
Ref | Expression |
---|---|
trrd | ⊢ (φ → R Trans A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 936 | . . . . . 6 ⊢ ((x ∈ A ∧ y ∈ A ∧ z ∈ A) ↔ ((x ∈ A ∧ y ∈ A) ∧ z ∈ A)) | |
2 | trrd.3 | . . . . . . 7 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A ∧ z ∈ A) ∧ (xRy ∧ yRz)) → xRz) | |
3 | 2 | 3exp 1150 | . . . . . 6 ⊢ (φ → ((x ∈ A ∧ y ∈ A ∧ z ∈ A) → ((xRy ∧ yRz) → xRz))) |
4 | 1, 3 | syl5bir 209 | . . . . 5 ⊢ (φ → (((x ∈ A ∧ y ∈ A) ∧ z ∈ A) → ((xRy ∧ yRz) → xRz))) |
5 | 4 | exp3a 425 | . . . 4 ⊢ (φ → ((x ∈ A ∧ y ∈ A) → (z ∈ A → ((xRy ∧ yRz) → xRz)))) |
6 | 5 | ralrimdv 2703 | . . 3 ⊢ (φ → ((x ∈ A ∧ y ∈ A) → ∀z ∈ A ((xRy ∧ yRz) → xRz))) |
7 | 6 | ralrimivv 2705 | . 2 ⊢ (φ → ∀x ∈ A ∀y ∈ A ∀z ∈ A ((xRy ∧ yRz) → xRz)) |
8 | trrd.1 | . . 3 ⊢ (φ → R ∈ V) | |
9 | trrd.2 | . . 3 ⊢ (φ → A ∈ W) | |
10 | breq 4641 | . . . . . . . 8 ⊢ (r = R → (xry ↔ xRy)) | |
11 | breq 4641 | . . . . . . . 8 ⊢ (r = R → (yrz ↔ yRz)) | |
12 | 10, 11 | anbi12d 691 | . . . . . . 7 ⊢ (r = R → ((xry ∧ yrz) ↔ (xRy ∧ yRz))) |
13 | breq 4641 | . . . . . . 7 ⊢ (r = R → (xrz ↔ xRz)) | |
14 | 12, 13 | imbi12d 311 | . . . . . 6 ⊢ (r = R → (((xry ∧ yrz) → xrz) ↔ ((xRy ∧ yRz) → xRz))) |
15 | 14 | ralbidv 2634 | . . . . 5 ⊢ (r = R → (∀z ∈ a ((xry ∧ yrz) → xrz) ↔ ∀z ∈ a ((xRy ∧ yRz) → xRz))) |
16 | 15 | 2ralbidv 2656 | . . . 4 ⊢ (r = R → (∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz) ↔ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xRy ∧ yRz) → xRz))) |
17 | raleq 2807 | . . . . . 6 ⊢ (a = A → (∀z ∈ a ((xRy ∧ yRz) → xRz) ↔ ∀z ∈ A ((xRy ∧ yRz) → xRz))) | |
18 | 17 | raleqbi1dv 2815 | . . . . 5 ⊢ (a = A → (∀y ∈ a ∀z ∈ a ((xRy ∧ yRz) → xRz) ↔ ∀y ∈ A ∀z ∈ A ((xRy ∧ yRz) → xRz))) |
19 | 18 | raleqbi1dv 2815 | . . . 4 ⊢ (a = A → (∀x ∈ a ∀y ∈ a ∀z ∈ a ((xRy ∧ yRz) → xRz) ↔ ∀x ∈ A ∀y ∈ A ∀z ∈ A ((xRy ∧ yRz) → xRz))) |
20 | df-trans 5899 | . . . 4 ⊢ Trans = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ∀z ∈ a ((xry ∧ yrz) → xrz)} | |
21 | 16, 19, 20 | brabg 4706 | . . 3 ⊢ ((R ∈ V ∧ A ∈ W) → (R Trans A ↔ ∀x ∈ A ∀y ∈ A ∀z ∈ A ((xRy ∧ yRz) → xRz))) |
22 | 8, 9, 21 | syl2anc 642 | . 2 ⊢ (φ → (R Trans A ↔ ∀x ∈ A ∀y ∈ A ∀z ∈ A ((xRy ∧ yRz) → xRz))) |
23 | 7, 22 | mpbird 223 | 1 ⊢ (φ → R Trans A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∀wral 2614 class class class wbr 4639 Trans ctrans 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-trans 5899 |
This theorem is referenced by: pod 5936 iserd 5942 |
Copyright terms: Public domain | W3C validator |