NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reueq1 GIF version

Theorem reueq1 2809
Description: Equality theorem for restricted uniqueness quantifier. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
reueq1 (A = B → (∃!x A φ∃!x B φ))
Distinct variable groups:   x,A   x,B
Allowed substitution hint:   φ(x)

Proof of Theorem reueq1
StepHypRef Expression
1 nfcv 2489 . 2 xA
2 nfcv 2489 . 2 xB
31, 2reueq1f 2805 1 (A = B → (∃!x A φ∃!x B φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   = wceq 1642  ∃!wreu 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-cleq 2346  df-clel 2349  df-nfc 2478  df-reu 2621
This theorem is referenced by:  reueqd  2817
  Copyright terms: Public domain W3C validator