New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reueq1f | GIF version |
Description: Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
raleq1f.1 | ⊢ ℲxA |
raleq1f.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
reueq1f | ⊢ (A = B → (∃!x ∈ A φ ↔ ∃!x ∈ B φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1f.1 | . . . 4 ⊢ ℲxA | |
2 | raleq1f.2 | . . . 4 ⊢ ℲxB | |
3 | 1, 2 | nfeq 2497 | . . 3 ⊢ Ⅎx A = B |
4 | eleq2 2414 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) | |
5 | 4 | anbi1d 685 | . . 3 ⊢ (A = B → ((x ∈ A ∧ φ) ↔ (x ∈ B ∧ φ))) |
6 | 3, 5 | eubid 2211 | . 2 ⊢ (A = B → (∃!x(x ∈ A ∧ φ) ↔ ∃!x(x ∈ B ∧ φ))) |
7 | df-reu 2622 | . 2 ⊢ (∃!x ∈ A φ ↔ ∃!x(x ∈ A ∧ φ)) | |
8 | df-reu 2622 | . 2 ⊢ (∃!x ∈ B φ ↔ ∃!x(x ∈ B ∧ φ)) | |
9 | 6, 7, 8 | 3bitr4g 279 | 1 ⊢ (A = B → (∃!x ∈ A φ ↔ ∃!x ∈ B φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 Ⅎwnfc 2477 ∃!wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-cleq 2346 df-clel 2349 df-nfc 2479 df-reu 2622 |
This theorem is referenced by: reueq1 2810 |
Copyright terms: Public domain | W3C validator |