NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reueq1f GIF version

Theorem reueq1f 2806
Description: Equality theorem for restricted uniqueness quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
raleq1f.1 xA
raleq1f.2 xB
Assertion
Ref Expression
reueq1f (A = B → (∃!x A φ∃!x B φ))

Proof of Theorem reueq1f
StepHypRef Expression
1 raleq1f.1 . . . 4 xA
2 raleq1f.2 . . . 4 xB
31, 2nfeq 2497 . . 3 x A = B
4 eleq2 2414 . . . 4 (A = B → (x Ax B))
54anbi1d 685 . . 3 (A = B → ((x A φ) ↔ (x B φ)))
63, 5eubid 2211 . 2 (A = B → (∃!x(x A φ) ↔ ∃!x(x B φ)))
7 df-reu 2622 . 2 (∃!x A φ∃!x(x A φ))
8 df-reu 2622 . 2 (∃!x B φ∃!x(x B φ))
96, 7, 83bitr4g 279 1 (A = B → (∃!x A φ∃!x B φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   = wceq 1642   wcel 1710  ∃!weu 2204  wnfc 2477  ∃!wreu 2617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-cleq 2346  df-clel 2349  df-nfc 2479  df-reu 2622
This theorem is referenced by:  reueq1  2810
  Copyright terms: Public domain W3C validator