NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reurex GIF version

Theorem reurex 2826
Description: Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
Assertion
Ref Expression
reurex (∃!x A φx A φ)

Proof of Theorem reurex
StepHypRef Expression
1 reu5 2825 . 2 (∃!x A φ ↔ (x A φ ∃*x A φ))
21simplbi 446 1 (∃!x A φx A φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 2616  ∃!wreu 2617  ∃*wrmo 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-rex 2621  df-reu 2622  df-rmo 2623
This theorem is referenced by:  reu3  3027
  Copyright terms: Public domain W3C validator