New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reu5 | GIF version |
Description: Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
reu5 | ⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∃*x ∈ A φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu5 2242 | . 2 ⊢ (∃!x(x ∈ A ∧ φ) ↔ (∃x(x ∈ A ∧ φ) ∧ ∃*x(x ∈ A ∧ φ))) | |
2 | df-reu 2622 | . 2 ⊢ (∃!x ∈ A φ ↔ ∃!x(x ∈ A ∧ φ)) | |
3 | df-rex 2621 | . . 3 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
4 | df-rmo 2623 | . . 3 ⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) | |
5 | 3, 4 | anbi12i 678 | . 2 ⊢ ((∃x ∈ A φ ∧ ∃*x ∈ A φ) ↔ (∃x(x ∈ A ∧ φ) ∧ ∃*x(x ∈ A ∧ φ))) |
6 | 1, 2, 5 | 3bitr4i 268 | 1 ⊢ (∃!x ∈ A φ ↔ (∃x ∈ A φ ∧ ∃*x ∈ A φ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃!weu 2204 ∃*wmo 2205 ∃wrex 2616 ∃!wreu 2617 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-rex 2621 df-reu 2622 df-rmo 2623 |
This theorem is referenced by: reurex 2826 reurmo 2827 reu4 3031 reueq 3034 fncnv 5159 |
Copyright terms: Public domain | W3C validator |