NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eubii GIF version

Theorem eubii 2213
Description: Introduce uniqueness quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
eubii.1 (φψ)
Assertion
Ref Expression
eubii (∃!xφ∃!xψ)

Proof of Theorem eubii
StepHypRef Expression
1 eubii.1 . . . 4 (φψ)
21a1i 10 . . 3 ( ⊤ → (φψ))
32eubidv 2212 . 2 ( ⊤ → (∃!xφ∃!xψ))
43trud 1323 1 (∃!xφ∃!xψ)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wtru 1316  ∃!weu 2204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-tru 1319  df-ex 1542  df-nf 1545  df-eu 2208
This theorem is referenced by:  cbveu  2224  2eu7  2290  2eu8  2291  reubiia  2797  cbvreu  2834  reuv  2875  euxfr2  3022  euxfr  3023  2reuswap  3039  2reu5lem1  3042  reuun2  3539  copsexg  4608  funeu2  5133  funcnv3  5158  fneu2  5189  tz6.12  5346  fsn  5433
  Copyright terms: Public domain W3C validator