NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexbidv2 GIF version

Theorem rexbidv2 2638
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
rexbidv2.1 (φ → ((x A ψ) ↔ (x B χ)))
Assertion
Ref Expression
rexbidv2 (φ → (x A ψx B χ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   χ(x)   A(x)   B(x)

Proof of Theorem rexbidv2
StepHypRef Expression
1 rexbidv2.1 . . 3 (φ → ((x A ψ) ↔ (x B χ)))
21exbidv 1626 . 2 (φ → (x(x A ψ) ↔ x(x B χ)))
3 df-rex 2621 . 2 (x A ψx(x A ψ))
4 df-rex 2621 . 2 (x B χx(x B χ))
52, 3, 43bitr4g 279 1 (φ → (x A ψx B χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-rex 2621
This theorem is referenced by:  rexss  3334  isoini  5498
  Copyright terms: Public domain W3C validator