New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexcom4b | GIF version |
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4b.1 | ⊢ B ∈ V |
Ref | Expression |
---|---|
rexcom4b | ⊢ (∃x∃y ∈ A (φ ∧ x = B) ↔ ∃y ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4a 2880 | . 2 ⊢ (∃x∃y ∈ A (φ ∧ x = B) ↔ ∃y ∈ A (φ ∧ ∃x x = B)) | |
2 | rexcom4b.1 | . . . . 5 ⊢ B ∈ V | |
3 | 2 | isseti 2866 | . . . 4 ⊢ ∃x x = B |
4 | 3 | biantru 491 | . . 3 ⊢ (φ ↔ (φ ∧ ∃x x = B)) |
5 | 4 | rexbii 2640 | . 2 ⊢ (∃y ∈ A φ ↔ ∃y ∈ A (φ ∧ ∃x x = B)) |
6 | 1, 5 | bitr4i 243 | 1 ⊢ (∃x∃y ∈ A (φ ∧ x = B) ↔ ∃y ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |