| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexcom4a | GIF version | ||
| Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4a | ⊢ (∃x∃y ∈ A (φ ∧ ψ) ↔ ∃y ∈ A (φ ∧ ∃xψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 2879 | . 2 ⊢ (∃y ∈ A ∃x(φ ∧ ψ) ↔ ∃x∃y ∈ A (φ ∧ ψ)) | |
| 2 | 19.42v 1905 | . . 3 ⊢ (∃x(φ ∧ ψ) ↔ (φ ∧ ∃xψ)) | |
| 3 | 2 | rexbii 2640 | . 2 ⊢ (∃y ∈ A ∃x(φ ∧ ψ) ↔ ∃y ∈ A (φ ∧ ∃xψ)) |
| 4 | 1, 3 | bitr3i 242 | 1 ⊢ (∃x∃y ∈ A (φ ∧ ψ) ↔ ∃y ∈ A (φ ∧ ∃xψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 |
| This theorem is referenced by: rexcom4b 2881 |
| Copyright terms: Public domain | W3C validator |