| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexex | GIF version | ||
| Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
| Ref | Expression |
|---|---|
| rexex | ⊢ (∃x ∈ A φ → ∃xφ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2621 | . 2 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
| 2 | simpr 447 | . . 3 ⊢ ((x ∈ A ∧ φ) → φ) | |
| 3 | 2 | eximi 1576 | . 2 ⊢ (∃x(x ∈ A ∧ φ) → ∃xφ) |
| 4 | 1, 3 | sylbi 187 | 1 ⊢ (∃x ∈ A φ → ∃xφ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-rex 2621 |
| This theorem is referenced by: reu3 3027 rmo2i 3133 dffo5 5425 |
| Copyright terms: Public domain | W3C validator |