NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexex GIF version

Theorem rexex 2674
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
rexex (x A φxφ)

Proof of Theorem rexex
StepHypRef Expression
1 df-rex 2621 . 2 (x A φx(x A φ))
2 simpr 447 . . 3 ((x A φ) → φ)
32eximi 1576 . 2 (x(x A φ) → xφ)
41, 3sylbi 187 1 (x A φxφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-rex 2621
This theorem is referenced by:  reu3  3027  rmo2i  3133  dffo5  5425
  Copyright terms: Public domain W3C validator