NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rsp GIF version

Theorem rsp 2675
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.)
Assertion
Ref Expression
rsp (x A φ → (x Aφ))

Proof of Theorem rsp
StepHypRef Expression
1 df-ral 2620 . 2 (x A φx(x Aφ))
2 sp 1747 . 2 (x(x Aφ) → (x Aφ))
31, 2sylbi 187 1 (x A φ → (x Aφ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-ral 2620
This theorem is referenced by:  rsp2  2677  rspec  2679  r19.12  2728  ralbi  2751  reupick2  3542  dfiun2g  4000  iinss2  4019  pw1disj  4168  sfinltfin  4536  fun11iun  5306  chfnrn  5400  ffnfv  5428  mpteq12f  5656  mpt2eq123  5662  fvmptss  5706
  Copyright terms: Public domain W3C validator