![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > rsp | GIF version |
Description: Restricted specialization. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
rsp | ⊢ (∀x ∈ A φ → (x ∈ A → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2619 | . 2 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
2 | sp 1747 | . 2 ⊢ (∀x(x ∈ A → φ) → (x ∈ A → φ)) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ (∀x ∈ A φ → (x ∈ A → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 1710 ∀wral 2614 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-ral 2619 |
This theorem is referenced by: rsp2 2676 rspec 2678 r19.12 2727 ralbi 2750 reupick2 3541 dfiun2g 3999 iinss2 4018 pw1disj 4167 sfinltfin 4535 fun11iun 5305 chfnrn 5399 ffnfv 5427 mpteq12f 5655 mpt2eq123 5661 fvmptss 5705 |
Copyright terms: Public domain | W3C validator |