New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rmo2i | GIF version |
Description: Condition implying restricted "at most one." (Contributed by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmo2.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
rmo2i | ⊢ (∃y ∈ A ∀x ∈ A (φ → x = y) → ∃*x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexex 2673 | . 2 ⊢ (∃y ∈ A ∀x ∈ A (φ → x = y) → ∃y∀x ∈ A (φ → x = y)) | |
2 | rmo2.1 | . . 3 ⊢ Ⅎyφ | |
3 | 2 | rmo2 3131 | . 2 ⊢ (∃*x ∈ A φ ↔ ∃y∀x ∈ A (φ → x = y)) |
4 | 1, 3 | sylibr 203 | 1 ⊢ (∃y ∈ A ∀x ∈ A (φ → x = y) → ∃*x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 Ⅎwnf 1544 ∀wral 2614 ∃wrex 2615 ∃*wrmo 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-ral 2619 df-rex 2620 df-rmo 2622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |