| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > reximdv2 | GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| reximdv2.1 | ⊢ (φ → ((x ∈ A ∧ ψ) → (x ∈ B ∧ χ))) |
| Ref | Expression |
|---|---|
| reximdv2 | ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ B χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv2.1 | . . 3 ⊢ (φ → ((x ∈ A ∧ ψ) → (x ∈ B ∧ χ))) | |
| 2 | 1 | eximdv 1622 | . 2 ⊢ (φ → (∃x(x ∈ A ∧ ψ) → ∃x(x ∈ B ∧ χ))) |
| 3 | df-rex 2621 | . 2 ⊢ (∃x ∈ A ψ ↔ ∃x(x ∈ A ∧ ψ)) | |
| 4 | df-rex 2621 | . 2 ⊢ (∃x ∈ B χ ↔ ∃x(x ∈ B ∧ χ)) | |
| 5 | 2, 3, 4 | 3imtr4g 261 | 1 ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ B χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 df-rex 2621 |
| This theorem is referenced by: ssrexv 3332 |
| Copyright terms: Public domain | W3C validator |