New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  ssrexv GIF version

Theorem ssrexv 3331
 Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
Assertion
Ref Expression
ssrexv (A B → (x A φx B φ))
Distinct variable groups:   x,A   x,B
Allowed substitution hint:   φ(x)

Proof of Theorem ssrexv
StepHypRef Expression
1 ssel 3267 . . 3 (A B → (x Ax B))
21anim1d 547 . 2 (A B → ((x A φ) → (x B φ)))
32reximdv2 2723 1 (A B → (x A φx B φ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1710  ∃wrex 2615   ⊆ wss 3257 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rex 2620  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-ss 3259 This theorem is referenced by:  iunss1  3980
 Copyright terms: Public domain W3C validator