| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > reximdai | GIF version | ||
| Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| reximdai.1 | ⊢ Ⅎxφ | 
| reximdai.2 | ⊢ (φ → (x ∈ A → (ψ → χ))) | 
| Ref | Expression | 
|---|---|
| reximdai | ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ A χ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reximdai.1 | . . 3 ⊢ Ⅎxφ | |
| 2 | reximdai.2 | . . 3 ⊢ (φ → (x ∈ A → (ψ → χ))) | |
| 3 | 1, 2 | ralrimi 2696 | . 2 ⊢ (φ → ∀x ∈ A (ψ → χ)) | 
| 4 | rexim 2719 | . 2 ⊢ (∀x ∈ A (ψ → χ) → (∃x ∈ A ψ → ∃x ∈ A χ)) | |
| 5 | 3, 4 | syl 15 | 1 ⊢ (φ → (∃x ∈ A ψ → ∃x ∈ A χ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 Ⅎwnf 1544 ∈ wcel 1710 ∀wral 2615 ∃wrex 2616 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 | 
| This theorem is referenced by: reximdvai 2725 chfnrn 5400 | 
| Copyright terms: Public domain | W3C validator |