NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reximdvai GIF version

Theorem reximdvai 2725
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.)
Hypothesis
Ref Expression
reximdvai.1 (φ → (x A → (ψχ)))
Assertion
Ref Expression
reximdvai (φ → (x A ψx A χ))
Distinct variable group:   φ,x
Allowed substitution hints:   ψ(x)   χ(x)   A(x)

Proof of Theorem reximdvai
StepHypRef Expression
1 nfv 1619 . 2 xφ
2 reximdvai.1 . 2 (φ → (x A → (ψχ)))
31, 2reximdai 2723 1 (φ → (x A ψx A χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-nf 1545  df-ral 2620  df-rex 2621
This theorem is referenced by:  reximdv  2726  reximdva  2727  reuind  3040
  Copyright terms: Public domain W3C validator