New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rmobida | GIF version |
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmobida.1 | ⊢ Ⅎxφ |
rmobida.2 | ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) |
Ref | Expression |
---|---|
rmobida | ⊢ (φ → (∃*x ∈ A ψ ↔ ∃*x ∈ A χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmobida.1 | . . 3 ⊢ Ⅎxφ | |
2 | rmobida.2 | . . . 4 ⊢ ((φ ∧ x ∈ A) → (ψ ↔ χ)) | |
3 | 2 | pm5.32da 622 | . . 3 ⊢ (φ → ((x ∈ A ∧ ψ) ↔ (x ∈ A ∧ χ))) |
4 | 1, 3 | mobid 2238 | . 2 ⊢ (φ → (∃*x(x ∈ A ∧ ψ) ↔ ∃*x(x ∈ A ∧ χ))) |
5 | df-rmo 2622 | . 2 ⊢ (∃*x ∈ A ψ ↔ ∃*x(x ∈ A ∧ ψ)) | |
6 | df-rmo 2622 | . 2 ⊢ (∃*x ∈ A χ ↔ ∃*x(x ∈ A ∧ χ)) | |
7 | 4, 5, 6 | 3bitr4g 279 | 1 ⊢ (φ → (∃*x ∈ A ψ ↔ ∃*x ∈ A χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 ∈ wcel 1710 ∃*wmo 2205 ∃*wrmo 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-eu 2208 df-mo 2209 df-rmo 2622 |
This theorem is referenced by: rmobidva 2799 |
Copyright terms: Public domain | W3C validator |