New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rsp2e | GIF version |
Description: Restricted specialization. (Contributed by FL, 4-Jun-2012.) |
Ref | Expression |
---|---|
rsp2e | ⊢ ((x ∈ A ∧ y ∈ B ∧ φ) → ∃x ∈ A ∃y ∈ B φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 955 | . . 3 ⊢ ((x ∈ A ∧ y ∈ B ∧ φ) → x ∈ A) | |
2 | rspe 2676 | . . . 4 ⊢ ((y ∈ B ∧ φ) → ∃y ∈ B φ) | |
3 | 2 | 3adant1 973 | . . 3 ⊢ ((x ∈ A ∧ y ∈ B ∧ φ) → ∃y ∈ B φ) |
4 | 19.8a 1756 | . . 3 ⊢ ((x ∈ A ∧ ∃y ∈ B φ) → ∃x(x ∈ A ∧ ∃y ∈ B φ)) | |
5 | 1, 3, 4 | syl2anc 642 | . 2 ⊢ ((x ∈ A ∧ y ∈ B ∧ φ) → ∃x(x ∈ A ∧ ∃y ∈ B φ)) |
6 | df-rex 2621 | . 2 ⊢ (∃x ∈ A ∃y ∈ B φ ↔ ∃x(x ∈ A ∧ ∃y ∈ B φ)) | |
7 | 5, 6 | sylibr 203 | 1 ⊢ ((x ∈ A ∧ y ∈ B ∧ φ) → ∃x ∈ A ∃y ∈ B φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 ∃wex 1541 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 df-ex 1542 df-rex 2621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |