New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rsp2 | GIF version |
Description: Restricted specialization. (Contributed by NM, 11-Feb-1997.) |
Ref | Expression |
---|---|
rsp2 | ⊢ (∀x ∈ A ∀y ∈ B φ → ((x ∈ A ∧ y ∈ B) → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rsp 2675 | . . 3 ⊢ (∀x ∈ A ∀y ∈ B φ → (x ∈ A → ∀y ∈ B φ)) | |
2 | rsp 2675 | . . 3 ⊢ (∀y ∈ B φ → (y ∈ B → φ)) | |
3 | 1, 2 | syl6 29 | . 2 ⊢ (∀x ∈ A ∀y ∈ B φ → (x ∈ A → (y ∈ B → φ))) |
4 | 3 | imp3a 420 | 1 ⊢ (∀x ∈ A ∀y ∈ B φ → ((x ∈ A ∧ y ∈ B) → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-ral 2620 |
This theorem is referenced by: ralcom2 2776 f1fveq 5474 |
Copyright terms: Public domain | W3C validator |