NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rsp2 GIF version

Theorem rsp2 2677
Description: Restricted specialization. (Contributed by NM, 11-Feb-1997.)
Assertion
Ref Expression
rsp2 (x A y B φ → ((x A y B) → φ))

Proof of Theorem rsp2
StepHypRef Expression
1 rsp 2675 . . 3 (x A y B φ → (x Ay B φ))
2 rsp 2675 . . 3 (y B φ → (y Bφ))
31, 2syl6 29 . 2 (x A y B φ → (x A → (y Bφ)))
43imp3a 420 1 (x A y B φ → ((x A y B) → φ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  wral 2615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-ral 2620
This theorem is referenced by:  ralcom2  2776  f1fveq  5474
  Copyright terms: Public domain W3C validator