New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rspe | GIF version |
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
rspe | ⊢ ((x ∈ A ∧ φ) → ∃x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 1756 | . 2 ⊢ ((x ∈ A ∧ φ) → ∃x(x ∈ A ∧ φ)) | |
2 | df-rex 2621 | . 2 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
3 | 1, 2 | sylibr 203 | 1 ⊢ ((x ∈ A ∧ φ) → ∃x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∃wex 1541 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-rex 2621 |
This theorem is referenced by: rsp2e 2678 2rmorex 3041 ssiun2 4010 dminss 5042 clos1nrel 5887 |
Copyright terms: Public domain | W3C validator |