NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rspe GIF version

Theorem rspe 2676
Description: Restricted specialization. (Contributed by NM, 12-Oct-1999.)
Assertion
Ref Expression
rspe ((x A φ) → x A φ)

Proof of Theorem rspe
StepHypRef Expression
1 19.8a 1756 . 2 ((x A φ) → x(x A φ))
2 df-rex 2621 . 2 (x A φx(x A φ))
31, 2sylibr 203 1 ((x A φ) → x A φ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wex 1541   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-rex 2621
This theorem is referenced by:  rsp2e  2678  2rmorex  3041  ssiun2  4010  dminss  5042  clos1nrel  5887
  Copyright terms: Public domain W3C validator