New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rspcsbela | GIF version |
Description: Special case related to rspsbc 3125. (Contributed by NM, 10-Dec-2005.) (Proof shortened by Eric Schmidt, 17-Jan-2007.) |
Ref | Expression |
---|---|
rspcsbela | ⊢ ((A ∈ B ∧ ∀x ∈ B C ∈ D) → [A / x]C ∈ D) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc 3125 | . . 3 ⊢ (A ∈ B → (∀x ∈ B C ∈ D → [̣A / x]̣C ∈ D)) | |
2 | sbcel1g 3156 | . . 3 ⊢ (A ∈ B → ([̣A / x]̣C ∈ D ↔ [A / x]C ∈ D)) | |
3 | 1, 2 | sylibd 205 | . 2 ⊢ (A ∈ B → (∀x ∈ B C ∈ D → [A / x]C ∈ D)) |
4 | 3 | imp 418 | 1 ⊢ ((A ∈ B ∧ ∀x ∈ B C ∈ D) → [A / x]C ∈ D) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∀wral 2615 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |