Step | Hyp | Ref
| Expression |
1 | | vex 2863 |
. . . . 5
⊢ y ∈
V |
2 | | csbtt 3149 |
. . . . 5
⊢ ((y ∈ V ∧ ℲxA) →
[y / x]A =
A) |
3 | 1, 2 | mpan 651 |
. . . 4
⊢
(ℲxA → [y / x]A =
A) |
4 | | vex 2863 |
. . . . 5
⊢ z ∈
V |
5 | | csbtt 3149 |
. . . . 5
⊢ ((z ∈ V ∧ ℲxA) →
[z / x]A =
A) |
6 | 4, 5 | mpan 651 |
. . . 4
⊢
(ℲxA → [z / x]A =
A) |
7 | 3, 6 | eqtr4d 2388 |
. . 3
⊢
(ℲxA → [y / x]A =
[z / x]A) |
8 | 7 | alrimivv 1632 |
. 2
⊢
(ℲxA → ∀y∀z[y /
x]A = [z /
x]A) |
9 | | nfv 1619 |
. . 3
⊢ Ⅎw∀y∀z[y /
x]A = [z /
x]A |
10 | | eleq2 2414 |
. . . . . 6
⊢ ([y / x]A =
[z / x]A
→ (w ∈ [y /
x]A ↔ w ∈ [z /
x]A)) |
11 | | sbsbc 3051 |
. . . . . . 7
⊢ ([y / x]w ∈ A ↔ [̣y / x]̣w ∈ A) |
12 | | sbcel2g 3158 |
. . . . . . . 8
⊢ (y ∈ V →
([̣y / x]̣w ∈ A ↔
w ∈
[y / x]A)) |
13 | 1, 12 | ax-mp 5 |
. . . . . . 7
⊢ ([̣y / x]̣w ∈ A ↔
w ∈
[y / x]A) |
14 | 11, 13 | bitri 240 |
. . . . . 6
⊢ ([y / x]w ∈ A ↔ w ∈ [y /
x]A) |
15 | | sbsbc 3051 |
. . . . . . 7
⊢ ([z / x]w ∈ A ↔ [̣z / x]̣w ∈ A) |
16 | | sbcel2g 3158 |
. . . . . . . 8
⊢ (z ∈ V →
([̣z / x]̣w ∈ A ↔
w ∈
[z / x]A)) |
17 | 4, 16 | ax-mp 5 |
. . . . . . 7
⊢ ([̣z / x]̣w ∈ A ↔
w ∈
[z / x]A) |
18 | 15, 17 | bitri 240 |
. . . . . 6
⊢ ([z / x]w ∈ A ↔ w ∈ [z /
x]A) |
19 | 10, 14, 18 | 3bitr4g 279 |
. . . . 5
⊢ ([y / x]A =
[z / x]A
→ ([y / x]w ∈ A ↔
[z / x]w ∈ A)) |
20 | 19 | 2alimi 1560 |
. . . 4
⊢ (∀y∀z[y /
x]A = [z /
x]A → ∀y∀z([y / x]w ∈ A ↔ [z /
x]w
∈ A)) |
21 | | sbnf2 2108 |
. . . 4
⊢ (Ⅎx w ∈ A ↔
∀y∀z([y / x]w ∈ A ↔ [z /
x]w
∈ A)) |
22 | 20, 21 | sylibr 203 |
. . 3
⊢ (∀y∀z[y /
x]A = [z /
x]A → Ⅎx w ∈ A) |
23 | 9, 22 | nfcd 2485 |
. 2
⊢ (∀y∀z[y /
x]A = [z /
x]A → ℲxA) |
24 | 8, 23 | impbii 180 |
1
⊢
(ℲxA ↔ ∀y∀z[y /
x]A = [z /
x]A) |