New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb6 | GIF version |
Description: Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sb6 | ⊢ ([y / x]φ ↔ ∀x(x = y → φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb56 2098 | . . 3 ⊢ (∃x(x = y ∧ φ) ↔ ∀x(x = y → φ)) | |
2 | 1 | anbi2i 675 | . 2 ⊢ (((x = y → φ) ∧ ∃x(x = y ∧ φ)) ↔ ((x = y → φ) ∧ ∀x(x = y → φ))) |
3 | df-sb 1649 | . 2 ⊢ ([y / x]φ ↔ ((x = y → φ) ∧ ∃x(x = y ∧ φ))) | |
4 | sp 1747 | . . 3 ⊢ (∀x(x = y → φ) → (x = y → φ)) | |
5 | 4 | pm4.71ri 614 | . 2 ⊢ (∀x(x = y → φ) ↔ ((x = y → φ) ∧ ∀x(x = y → φ))) |
6 | 2, 3, 5 | 3bitr4i 268 | 1 ⊢ ([y / x]φ ↔ ∀x(x = y → φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sb5 2100 2sb6 2113 sb6a 2116 exsbOLD 2131 sbal2 2134 |
Copyright terms: Public domain | W3C validator |