| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > sb56 | GIF version | ||
| Description: Two equivalent ways of expressing the proper substitution of y for x in φ, when x and y are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 1649. (Contributed by NM, 14-Apr-2008.) | 
| Ref | Expression | 
|---|---|
| sb56 | ⊢ (∃x(x = y ∧ φ) ↔ ∀x(x = y → φ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfa1 1788 | . 2 ⊢ Ⅎx∀x(x = y → φ) | |
| 2 | ax11v 2096 | . . 3 ⊢ (x = y → (φ → ∀x(x = y → φ))) | |
| 3 | sp 1747 | . . . 4 ⊢ (∀x(x = y → φ) → (x = y → φ)) | |
| 4 | 3 | com12 27 | . . 3 ⊢ (x = y → (∀x(x = y → φ) → φ)) | 
| 5 | 2, 4 | impbid 183 | . 2 ⊢ (x = y → (φ ↔ ∀x(x = y → φ))) | 
| 6 | 1, 5 | equsex 1962 | 1 ⊢ (∃x(x = y ∧ φ) ↔ ∀x(x = y → φ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 | 
| This theorem is referenced by: sb6 2099 sb5 2100 alexeq 2969 | 
| Copyright terms: Public domain | W3C validator |