New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbhb | GIF version |
Description: Two ways of expressing "x is (effectively) not free in φ." (Contributed by NM, 29-May-2009.) |
Ref | Expression |
---|---|
sbhb | ⊢ ((φ → ∀xφ) ↔ ∀y(φ → [y / x]φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . 4 ⊢ Ⅎyφ | |
2 | 1 | sb8 2092 | . . 3 ⊢ (∀xφ ↔ ∀y[y / x]φ) |
3 | 2 | imbi2i 303 | . 2 ⊢ ((φ → ∀xφ) ↔ (φ → ∀y[y / x]φ)) |
4 | 19.21v 1890 | . 2 ⊢ (∀y(φ → [y / x]φ) ↔ (φ → ∀y[y / x]φ)) | |
5 | 3, 4 | bitr4i 243 | 1 ⊢ ((φ → ∀xφ) ↔ ∀y(φ → [y / x]φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbnf2 2108 |
Copyright terms: Public domain | W3C validator |