New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sb8e | GIF version |
Description: Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) |
Ref | Expression |
---|---|
sb5rf.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
sb8e | ⊢ (∃xφ ↔ ∃y[y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5rf.1 | . . . . . 6 ⊢ Ⅎyφ | |
2 | 1 | nfn 1793 | . . . . 5 ⊢ Ⅎy ¬ φ |
3 | 2 | sb8 2092 | . . . 4 ⊢ (∀x ¬ φ ↔ ∀y[y / x] ¬ φ) |
4 | sbn 2062 | . . . . 5 ⊢ ([y / x] ¬ φ ↔ ¬ [y / x]φ) | |
5 | 4 | albii 1566 | . . . 4 ⊢ (∀y[y / x] ¬ φ ↔ ∀y ¬ [y / x]φ) |
6 | 3, 5 | bitri 240 | . . 3 ⊢ (∀x ¬ φ ↔ ∀y ¬ [y / x]φ) |
7 | 6 | notbii 287 | . 2 ⊢ (¬ ∀x ¬ φ ↔ ¬ ∀y ¬ [y / x]φ) |
8 | df-ex 1542 | . 2 ⊢ (∃xφ ↔ ¬ ∀x ¬ φ) | |
9 | df-ex 1542 | . 2 ⊢ (∃y[y / x]φ ↔ ¬ ∀y ¬ [y / x]φ) | |
10 | 7, 8, 9 | 3bitr4i 268 | 1 ⊢ (∃xφ ↔ ∃y[y / x]φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: exsbOLD 2131 sb8mo 2223 |
Copyright terms: Public domain | W3C validator |